3,539 research outputs found

    Fused mechanomyography and inertial measurement for human-robot interface

    Get PDF
    Human-Machine Interfaces (HMI) are the technology through which we interact with the ever-increasing quantity of smart devices surrounding us. The fundamental goal of an HMI is to facilitate robot control through uniting a human operator as the supervisor with a machine as the task executor. Sensors, actuators, and onboard intelligence have not reached the point where robotic manipulators may function with complete autonomy and therefore some form of HMI is still necessary in unstructured environments. These may include environments where direct human action is undesirable or infeasible, and situations where a robot must assist and/or interface with people. Contemporary literature has introduced concepts such as body-worn mechanical devices, instrumented gloves, inertial or electromagnetic motion tracking sensors on the arms, head, or legs, electroencephalographic (EEG) brain activity sensors, electromyographic (EMG) muscular activity sensors and camera-based (vision) interfaces to recognize hand gestures and/or track arm motions for assessment of operator intent and generation of robotic control signals. While these developments offer a wealth of future potential their utility has been largely restricted to laboratory demonstrations in controlled environments due to issues such as lack of portability and robustness and an inability to extract operator intent for both arm and hand motion. Wearable physiological sensors hold particular promise for capture of human intent/command. EMG-based gesture recognition systems in particular have received significant attention in recent literature. As wearable pervasive devices, they offer benefits over camera or physical input systems in that they neither inhibit the user physically nor constrain the user to a location where the sensors are deployed. Despite these benefits, EMG alone has yet to demonstrate the capacity to recognize both gross movement (e.g. arm motion) and finer grasping (e.g. hand movement). As such, many researchers have proposed fusing muscle activity (EMG) and motion tracking e.g. (inertial measurement) to combine arm motion and grasp intent as HMI input for manipulator control. However, such work has arguably reached a plateau since EMG suffers from interference from environmental factors which cause signal degradation over time, demands an electrical connection with the skin, and has not demonstrated the capacity to function out of controlled environments for long periods of time. This thesis proposes a new form of gesture-based interface utilising a novel combination of inertial measurement units (IMUs) and mechanomyography sensors (MMGs). The modular system permits numerous configurations of IMU to derive body kinematics in real-time and uses this to convert arm movements into control signals. Additionally, bands containing six mechanomyography sensors were used to observe muscular contractions in the forearm which are generated using specific hand motions. This combination of continuous and discrete control signals allows a large variety of smart devices to be controlled. Several methods of pattern recognition were implemented to provide accurate decoding of the mechanomyographic information, including Linear Discriminant Analysis and Support Vector Machines. Based on these techniques, accuracies of 94.5% and 94.6% respectively were achieved for 12 gesture classification. In real-time tests, accuracies of 95.6% were achieved in 5 gesture classification. It has previously been noted that MMG sensors are susceptible to motion induced interference. The thesis also established that arm pose also changes the measured signal. This thesis introduces a new method of fusing of IMU and MMG to provide a classification that is robust to both of these sources of interference. Additionally, an improvement in orientation estimation, and a new orientation estimation algorithm are proposed. These improvements to the robustness of the system provide the first solution that is able to reliably track both motion and muscle activity for extended periods of time for HMI outside a clinical environment. Application in robot teleoperation in both real-world and virtual environments were explored. With multiple degrees of freedom, robot teleoperation provides an ideal test platform for HMI devices, since it requires a combination of continuous and discrete control signals. The field of prosthetics also represents a unique challenge for HMI applications. In an ideal situation, the sensor suite should be capable of detecting the muscular activity in the residual limb which is naturally indicative of intent to perform a specific hand pose and trigger this post in the prosthetic device. Dynamic environmental conditions within a socket such as skin impedance have delayed the translation of gesture control systems into prosthetic devices, however mechanomyography sensors are unaffected by such issues. There is huge potential for a system like this to be utilised as a controller as ubiquitous computing systems become more prevalent, and as the desire for a simple, universal interface increases. Such systems have the potential to impact significantly on the quality of life of prosthetic users and others.Open Acces

    Comparison of Countermovement and Squat Jumps Performance In Recreationally Trained Males

    Get PDF
    International Journal of Exercise Science 14(1): 462-472, 2021. The vertical jump has been shown to be an effective tool in assessing neuromuscular fatigue. The two most common iterations of the vertical jump are the countermovement and squat jumps. This investigation sought to identify if differences exist between the two jumping strategies with regard to electromyography (EMG) and kinetics in a group of recreationally trained males. Twenty-two participants completed one experimental session, where three countermovement (CMJ) and three squat jumps (SJ) were performed using a counterbalanced within-subject design. Jump performance was evaluated with data obtained using a force platform. Additionally, EMG was collected on the vastus lateralis (VL), vastus medialis (VM), semitendinosus (ST) and medial gastrocnemius (MG). Greater EMG values were seen in the CMJ for ST as well as percentage of activation in the MG (p \u3c 0.05). Increased values of mean force and mean power were observed in the SJ, while the CMJ showed greater peak and mean velocity. Greater jump heights in the CMJ were present as well (p \u3c 0.05). These findings suggest that the increase in CMJ jump height due to the increase in propulsive velocity is not due to increases in knee extensors muscle activation

    Impact of hydration status on electromyography and ratings of perceived exertion during the vertical jump

    Get PDF
    Copyright (c) the author(s). This is an open access article under CC BY license (https://creativecommons.org/licenses/by/4.0/) Background: The vertical jumping task is commonly used to assess lower-body power output in athletic populations, in addition to being commonly used to during investigations of hydration and anaerobic performance. Changes in neuromuscular function during a hypohydrated state have been proposed as a potential mechanism to decreases in anaerobic performance. Objectives: The primary purpose of this investigation was to examine the impact of hydration state on electromyography during the vertical jumping task. Methods: Twenty recreationally trained males were tested in three hydration conditions (hypohydrated, euhydrated, and control). Testing included maximal voluntary contractions of the vastus lateralis, vastus medialis, semitendinosus and medial gastrocnemius. Participants performed three maximal countermovement and squat jumps respectively for a total of six jumps in each condition. Both mean muscle activity and percentage of maximal voluntary contraction were calculated across the propulsive phase of each jump. Additionally, measures of RPE and the use of a mood rating scale were used as subjective measures. Results: No differences were seen in mean muscle activity and percentage of MVC in either of the jumping conditions (p \u3e 0.05). Significant differences were seen with higher ratings of perceived exertion as well as lower levels of mood ratings after the hypohydrated condition (p = 0.02 and p = 0.048 respectively). Conclusions: Decrements seen in vertical jump performance during a hypohydrated state appear to be caused from changes other than neuromuscular function and muscle activity. Differences in subjective measures may provide insight into changes in motivational levels and potentially impacting performance

    Impact of Hydration Status On Electromyography and Ratings of Perceived Exertion During the Vertical Jump

    Get PDF
    Background: The vertical jumping task is commonly used to assess lower-body power output in athletic populations, in addition to being commonly used to during investigations of hydration and anaerobic performance. Changes in neuromuscular function during a hypohydrated state have been proposed as a potential mechanism to decreases in anaerobic performance. Objectives: The primary purpose of this investigation was to examine the impact of hydration state on electromyography during the vertical jumping task. Methods: Twenty recreationally trained males were tested in three hydration conditions (hypohydrated, euhydrated, and control). Testing included maximal voluntary contractions of the vastus lateralis, vastus medialis, semitendinosus and medial gastrocnemius. Participants performed three maximal countermovement and squat jumps respectively for a total of six jumps in each condition. Both mean muscle activity and percentage of maximal voluntary contraction were calculated across the propulsive phase of each jump. Additionally, measures of RPE and the use of a mood rating scale were used as subjective measures. Results: No differences were seen in mean muscle activity and percentage of MVC in either of the jumping conditions (p \u3e 0.05). Significant differences were seen with higher ratings of perceived exertion as well as lower levels of mood ratings after the hypohydrated condition (p = 0.02 and p = 0.048 respectively). Conclusions: Decrements seen in vertical jump performance during a hypohydrated state appear to be caused from changes other than neuromuscular function and muscle activity. Differences in subjective measures may provide insight into changes in motivational levels and potentially impacting performance

    Impact of Hydration Status on Jump Performance in Recreationally Trained Males

    Get PDF
    International Journal of Exercise Science 13(4): 826-836, 2020. The vertical jump is commonly used as a means of evaluating athlete readiness. Athletes have been shown to arrive to training and competition in a hypohydrated state. Thus, this investigation sought to examine the impact of hydration status on both countermovement (CMJ) and squat jump (SJ) performance. Twenty-five recreationally trained males completed three CMJ and SJ in a euhydrated, hypohydrated and control condition. Conditions were separated by a minimum of 24 hours. Hydration status was assessed using urine specific gravity. Jump performance was evaluated using both kinematic and kinetic data obtained from a force platform. A repeated-measures ANOVA was performed for each variable of interest in both the CMJ and SJ. CMJ peak and mean force values were significantly greater in the euhydrated condition compared to the hypohydrated condition (p \u3c 0.05), with no differences between the control condition and either experimental condition. SJ showed reductions in jump height, peak and mean velocity, peak and mean power and impulse from control and euhydrated conditions (p \u3c 0.05). The findings of this investigation show that when performing jump testing, specifically SJ, that hydration status of the individual may impact commonly used variables to assess the readiness of the individual for a given day

    Differences in Falls and Recovery From a Slip Based On an Individual\u27s Lower Extremity Corrective Response

    Get PDF
    Background: Slips and falls account for high rates of injury and mortality in multiple populations. The corrective responses during the slip perturbation have been well documented. However, when a fall results from a slip, it is unclear which of these responses were inadequate. Objective: The purpose of this study was to examine differences in lower extremity corrective responses of the slip recovery response between individuals who fall and those who recover. Methodology: Sixty-four participants completed this study (32 males & 32 females). Participant’s gait kinematics and kinetics were collected during normal gait (NG) and an unexpected slip (US). A prediction equation for slip outcome and slip severity were created using a binary logistic regression model. Results: Our findings show an increased time to peak hip extension (OR = 1.006, CI: 1.000-1.011) and ankle dorsiflexion (OR = 1.005, CI: 1.001-1.009) moments increased the odds of falling, while the average ankle moment was negatively associated with falling (OR = 0.001, CI: 0.001-0.005). Conclusions: Rapid lower extremity corrective responses appear critical in arresting the slip and preventing a fall. While there are various strategies for slip recovery, our findings suggest that the primary recovery mechanism at the slipping hip may play a vital role in preventing the fall
    • …
    corecore